如临大敌解释(ABF,如临大敌?)
在去年芯片缺货的时候,从三星、台积电到Intel和AMD都对一个材料关注有加,那就是ABF(Ajinomoto Build-up Film )。而这一切的故事,都要从一家原本做味精的企业味之素说起。
按照味之素集团网站所说,在 1970 年代,集团开始探索鲜味调味品副产品的应用。我们知道其中一些物质具有优异的材料特性,有可能用于电子行业的树脂和涂层剂。处理器变得越来越小,速度越来越快,印刷电路板制造商需要更好的绝缘材料来保持性能。到了1996 年,一家 CPU 制造商与该集团接洽,希望利用氨基酸技术开发一种薄膜型绝缘体。这最终推动了ABF载板的诞生。
正如大家所看到的,电路集成的进步使得由纳米级电【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的子电路组成的 CPU 成为可能。这些电路必须连接到电子设备和系统中的毫米级电子元件。当然,这可以通过使用由多层微电路组成的 CPU的积层载板来实现。而ABF促进了这些微米级电路的形成,因为它的表面可以接受激光加工和直接镀铜。今天,ABF 是形成电路的基本材料,该电路可引导电子从纳米级 CPU 终端流向印刷载板上的毫米级终端。
可以说,ABF的存在让芯片小型化成为可能。然而,随着芯片的持续发展,ABF也迎来了新的挑战。
ABF,如临大敌
从原理上看,ABF 充当了设备封装内的床,连接 PCB 和纳米级 CPU 的多层微电路组成。
而基于其打造的ABF 基板的一个关键元件是电容器,它主要用于去耦并占据基板【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的的两侧。
anandtech在报道中也表示,现代芯片通常被安装在细间距载板 (FPS:fine pitch substrates ) 上,然后将其放置在多层高密度互连 (HDI:high-density interconnect) 载板上。而如今最先进的 CPU/GPU HDI 载板都使用Ajinomoto Build-up Film (ABF),它结合了有机环氧树脂、硬化剂和无机微粒填料。ABF易于使用,可实现高密度间距(从而实现高密度金属布线),具有足以满足现代芯片的绝缘性能、高刚性、高耐用性和低热膨胀等因素。
台湾工研院材化所的庄贵贻也曾撰文指出,ABF载板材料是90年代由Intel所主导的【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的材料,用于导入覆晶构装制程等高级载板的生产,可制成较细线路、适合高脚数、高传输的IC封装。其载板核心结构仍是保留以玻纤布预浸树脂(FR-5或BT树脂)做为核心层(Core Substrate),再使用增层材料(Build up Materials )叠加的方式增加层数,以双面核心为基础,做上下对称式的加层,但上下的增层结构,舍去原用的预浸玻纤布压合铜箔的铜箔载板,而在ABF膜层上改用电镀铜取代之,如图所示。如此一来,可以减少载板总体的厚度,突破原有含玻纤树脂载板在激光钻孔所遇到的困难度。
但是,随着产业转向小芯片设计,封装的重要程度日渐提升,进而给封装材料提出了新需求。
“因为这些多小芯片设计将更【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的耗电(因此更热),并且由于内存和 I/O 接口的扩大,需要更高密度的金属写入。功率需求的增加给电路的外围子结构带来了额外的压力。多年来,寻找新材料用于半导体行业芯片的核心构成一直是一个热门话题。”
anandtech在报道中说。在这种情况下,玻璃成为了很多厂商探索的新目标,因为玻璃被认为比基于有机树脂的载板更坚硬并具有多项优势,但玻璃与铜(或其他金属线)之间的粘合仍然是键合方面的主要挑战。
但,有不少厂商已经跨出了重要一步。
玻璃,有望接任?
日前,日本Dai Nippon Printing (DNP) 展示了半导体封装的一项新开发成果——玻璃芯载板 (GCS:Glass Core Substrate【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的)——据说它可以解决ABF带来的许多问题。
DNP声称,其具有玻璃芯的 HDI 载板与基于有机树脂的载板相比具有更优越的性能。根据 Dai Nippon 的说法,使用玻璃芯载板 (GCS) 可以实现更精细的间距,因此可以实现极其密集的布线,因为它更硬并且不易因高温而膨胀。DNP展示的示意图甚至完全从封装中省略了细间距载板,暗示这部分可能不再需要。
DNP 在报道中还表示,其玻璃芯载板可以提供高纵横比的高玻璃通孔 (TGV) 密度(与 FPS 兼容)。在这种情况下,纵横比是玻璃厚度与通孔直径之间的比率。随着过孔数量的增加和比例的增加,载板的加工变得越来越困难,并且保持刚性变得更具挑战性。
从DNP的介【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的绍可以看到,其开发的玻璃载板具有 9 的纵横比,并确保粘合性以实现细间距兼容布线。该公司表示,由于 GCS 厚度限制很少,因此在保持厚度、翘曲、刚度和平滑度之间的平衡方面有很大的自由度。“我们还有新的专有制造方法增强了玻璃和金属之间的粘附性,这是传统技术难以实现的,这也帮助他们实现了精细间距和高可靠性。”DNP同时还强调。
除了DNP,韩国SK集团旗下的Absolics也看好了玻璃带来的机会。因为他们认为玻璃拥有很高的耐热性,为此他们将其视为半导体封装的改革者。Absolics表示,随着微处理的性能提升已达到极限,半导体行业正在积极利用异构封装,但现有的半导体载板必须通过称为硅中介层的中间载板连【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的接到半导体芯片,而内置无源元件的玻璃载板可以在相同尺寸下集成更多的芯片,功耗也减少了一半。值得一提的是,Absolics在早前还获得了美国设备大厂应用材料的投资。
另外,玻璃大厂康宁也看好玻璃在载板中的机会。
他们在一篇论文写道,半导体封装的新举措创造了对新材料解决方案的需求。为扩展用于 3D-IC 堆叠的中介层技术,人们付出了巨大的努力。正在开发多种解决方案来满足其中一些需求,包括使用各种常用材料的传统中介层以及扇出晶圆级封装 (FOWLP),这已成为试图实现低成本的普遍考虑因素。
此外,移动设备和物联网 (IoT) 的激增导致对 RF 通信的要求越来越高。这些要求包括引入更多频段、更小/更薄的封【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的装尺寸以及在引入新功能时需要节省电力以延长电池寿命等要求。事实证明,玻璃是应对这些挑战的绝佳解决方案,因为玻璃具有许多支持上述举措的特性,当中包括高电阻率和低电损耗、低或可调节的介电常数以及可调节的热膨胀系数 (CTE)。
康宁表示,3D IC 堆叠的重要挑战之一是由于 CTE 不匹配而导致的可靠性,而玻璃提供了一个极好的机会来管理 3D-IC 堆叠的翘曲,同时优化 CTE。下图说明了在中介层应用中堆叠具有多个 CTE 的载板所面临的挑战。其中左图示意性地显示了安装在 Si 中介层上的 Si 芯片,然后将其安装在有机载板上。当载板经历温度循环时,CTE 不匹配会导致故障。
但是,如果使用 CTE 【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的介于玻璃和有机物之间的玻璃中介层代替 Si 中介层,则可以更好地管理这种翘曲并提高可靠性,正如佐治亚理工学院封装研究中心 (PRC) 的工作所证明的那样,如上图图右所示 。
写在最后
我们必须承认,ABF载板的地位是短期内不能动摇的,从QYR的统计及预测我们也可以看到。根据他们的统计,2021年全球ABF基板市场销售额达到了43.68亿美元,预计2028年将达到65.29亿美元,年复合增长率(CAGR)为5.56%(2022-2028)。
而英特尔和AMD等厂商的大力投入,也可以看做ABF的风向标。
以英特尔为例,在去年,因为ABF的短缺,给英特尔造成了困扰。为此,英特尔宣布其越南组装和测试 (VNA【资 ;源 之.家.】ziyuanzhij. cn 每日持.续更新.可.实操.的T) 工厂现在将在内部将电容器连接到 ABF 基板的两侧。这一变化将使英特尔在 ABF 制造过程中有效地消除对外部供应商的依赖程度。据英特尔称,其结果是能够以更快的速度完成芯片组装 80%;AMD也通过和多家厂商绑定了长约,以保证ABF供应。
但是,正如这个行业里一直上演的故事一样,没有什么是一成不变的。
推荐阅读
友情提醒: 请尽量登录购买,防止付款了不发货!
QQ交流群:226333560 站长微信:qgzmt2